
Week 7 - Wednesday

 What did we talk about last time?
 Gantt charts
 Detailed design
 Design patterns
 Composite
 Command
 Decorator
 Observer
 Factory method
 Abstract factory
 Singleton
 Strategy
 Adapter

 It's not always necessary to build a system from scratch
 A bought and customized system is one with several bought subsystems

that have been customized and integrated into a product that satisfies
requirements

 These systems come in a number of overlapping categories:
 Commercial off-the-shelf (COTS) systems are generic products (like SAP,

SalesForce, or Blackboard) that need significant customization for a particular
client

 Component-based systems are constructed from individual objects that use
standard interfaces, like Java Beans and .NET

 Service-oriented systems are like component-based systems except that the
connection between components is over the network, and the services are
provided by servers

 Pros:
 Widely used components are usually reliable
 Good documentation and standards exist for using such components
 Constructing these systems is usually faster, and costs are easier to

predict
 Cons:
 Increased dependency on outside organizations and their support
 Lowered flexibility
 Software engineers have less creative control, potentially reducing

job satisfaction (boohoo)

 On the other hand, you can build a system from scratch (as
we're doing in this class)

 Built systems revolve around three activities:
 Designing algorithms
 Designing data structures
 Programming

 An algorithm is a finite sequence of steps for solving a problem
 A finite recipe for an infinite number of answers

 There are also heuristics, which are not guaranteed to solve the problem
but can give answers that are good enough

 Some simple algorithms were discussed in COMP 1600:
 Bubble sort

 More complex algorithms were discussed in COMP 2100:
 Merge sort

 Even more complex algorithm types are discussed in COMP 4500:
 Greedy, divide-and-conquer, dynamic programming, and more

 Algorithm design is challenging, so it's good to consult the literature from
a specific area to see if someone has already come up with good ideas

 A data structure is a way to store and organize values in
computer memory

 COMP 2100 is supposed to introduce you to many useful
kinds of data structures, many of which fall into two
categories
 Contiguous data structures
 Linked data structures

 There is no such thing as the best data structure for
everything: use the right tool for the right job

 Contiguous data structures are built around array-like primitives
 Examples: arrays, ArrayList, HashSet, HashMap, Vector, ArrayDeque
 Pros:
 Arbitrary elements can be jumped to in constant time
 Iteration through elements is fast
 Better locality of reference (elements are close together in memory)

 Cons:
 Space is usually wasted, sometimes almost half
 Resizing is often expensive

0 1 2 3 4 5 6 7 8 9

 Linked data structures are built around nodes linked together
 Examples: linked lists, trees, LinkedList, TreeSet, TreeMap
 Pros:
 Space is only allocated for actual elements
 Adding or removing elements can take constant time

 Cons:
 Reaching arbitrary elements requires visiting other nodes
 Iteration through elements is slower
 Elements can be spread throughout memory, worsening caching
 Each node has the overhead of additional pointers in addition to data

 Programming is *sigh* creating a description of algorithms and data
structures that can be executed on a computer

 High-level programming languages are human-readable but not directly
executable
 Some languages like C and Rust are compiled into machine language
 Some languages like Python and PHP are interpreted and run on the fly
 Yet others like Java and C# run in a virtual machine, which combines elements

of both interpretation and compilation
 The syntax of a language is the lexicon (words or symbols used) and its

grammar (the ways words and symbols can be combined)
 Semantics describe the meaning of syntactically correct expressions
 Pragmatics describe how to use a language to get things done

 If you've taken COMP 3200, you know that there are different flavors of
programming languages called paradigms

 Paradigms
 Imperative
 Data-driven
 Declarative

 Because it maps most closely to what the machine is doing, imperative
languages have long been popular

 It still pays to know how to think about other languages which can be
useful in specific situations

 Pick the language that's right for the product and the client, not
necessarily the one you're most comfortable with

 Imperative languages manipulate values
in memory locations

 If you can turn your solution into a list of
instructions executed in order, imperative
languages are a good fit

 C and Pascal are quintessentially
imperative

 Most of the Java we do is imperative, but
Java can be written in a functional style
and in an event-driven style (though it's
awkward)

 Object-orientation is a layer that is often
applied to imperative languages but
shows up in other paradigms too

double mean(double a, double b)
{

double total;
total = a + b;
return (total / 2.0);

}

Sample C/C++

 Data-driven languages give rules for manipulating data
 The rules specify what happens the program runs into data

formatted a certain way
 Examples:
 XSLT is a language for converting one XML document into another
 AWK and sed are Unix utilities for processing text

 If you do a lot of processing of data files, you might need to use
one

<xsl:template match="volume">
Vol. <xsl:value-of select="." />,

</xsl:template>

Sample XSLT

 Declarative languages cover a lot of ground
 Logic languages like Prolog give rules that

state goals and ways to achieve them as well
as facts that are goals that have already been
achieved
 Traditionally used for AI

 Functional languages like Haskell express
everything in terms of functions that return
values (but don't actually change the state of
memory)
 Other examples: Erlang/Elixir, Clojure, F#
 JavaScript allows for functional programming
 Scala is multi-paradigm with functional ideas

domesticated(X) :- cow(X).
cow(bossy).
? domesticated(bossy).

factorial 0 = 1
factorial n = n * factorial (n - 1)

Sample Prolog

Sample Haskell

 Idioms in programming languages are common ways to express ideas
 Example Java idioms:
 Use for loops when you want to repeat a specific number of times
 Use while loops when you don't know how much you're going to repeat
 Use a three-line swap to exchange values

 It's a good idea to read code in a language you don't know well to figure
out the idioms that people use

 Some people use idioms from languages they know better that can be
either inefficient or confusing if they're not used in a different language

 Syntactic sugar is a kind of formalized idiom
 An easy-to-use grammatical structure is converted to a harder-to-read one

behind the scenes
 Example: enhanced for loops in Java

 Each language has stylistic considerations for how to write
readable code
 Many workplaces and open source projects publish style guidelines

 Naming conventions cover how to name variables, methods,
classes, files, packages, etc.
 Spelling matters
 Capitalization is often a matter of convention
 Being consistent makes everything clearer

 Most languages encourage either snake case or camel case
 Snake case breaks up words with underscores: nuclear_silo_radius
 Camel case breaks up words with capitalization: nuclearSiloRadius
 Snake case is common in C and Python
 Camel case is common in Java and C#
 Very few programming languages allow spaces in variable names

 I prefer variables to be explicit so that it's clear what we're talking about even if we start
reading in the middle of unfamiliar code
 Java tends toward the explicit rather than the abbreviated

 A few other Java naming conventions:
 Packages are all lowercase
 Local variables, member variables, and methods start with lowercase letters
 Classes, enums, and interfaces start with uppercase letters
 Constants are written in snake case with ALL CAPS

 Most languages do not have meaningful limitations on variable name length now, but they
used to

 Older C code in particular often leaves out vowels to save space
 Hungarian notation is naming conventions that describe the types of variables with

prefixes:
 wParam (word-sized parameter)
 pfData (pointer to a floating-point value of data)
 lpszName (long pointer to a zero-terminated string)

 Hungarian notations can also be used to specify scopes:
 g_nGoats (global integer for number of goats)
 m_nBoats (member variable integer for number of boats)

 These conventions have largely been given up, since IDEs provide tools for keeping track
of types and scopes
 Also, languages likes Java and C# have much stronger type-safety than C and C++, giving

compiler errors for misusing types

 Many languages (with the notable exception
of Python) ignore whitespace

 Thus, we have a choice about how to layout
our code

 In C-family, curly brace languages, it's
common to put the opening brace of an if
statement, method, or loop either on the
same line as the header (K&R style) or on the
next line (Allman style)
 K&R is more common for Java, but Allman is

more common for C#
 Some people also have strong feelings that

indentation should be tabs while others
prefer spaces

 A common convention is that lines of code
should not exceed 80 characters

if (raining) {
System.out.println("I'm wet!");

}

if (raining)
{

System.out.println("I'm wet!");
}

K&R style

Allman style

 Almost every language allows for comments
 Code that is so easy to understand that it needs no comments

is called self-documenting code
 Ideally, all code is self-documenting, but this goal is rarely reached

 Perhaps the other end of the spectrum is literate
programming, which explains everything in English mixed in
with the code, taking the perspective that code is for humans
to understand and only incidentally for computers to execute

 Commenting should explain confusing code, especially
unusual algorithms

 Do use comments to describe the intent of a complicated piece of
code

 Do use comments to explain the rationale behind a decision so
that people can understand in the future
 Why this way?
 Why not that other way?

 Do use comments to reference relevant outside documents
 Explanation of an algorithm
 API documentation page
 Design document with UML diagrams

 Don't use comments to repeat
the code

 Be careful about using
comments for to-do items and
future work
 Especially if it means you don't do

the right thing now
 It is possible to over-comment,

so consider whether the
supplemental information is
useful

// Increase i by 1
++i;

// Include sales[i] in the total
total = total + sales[i];

Bad comments that repeat the code

 Work day on Friday
 We'll talk about quality assurance in construction on

Wednesday
 Since Monday is break!

 Read Chapter 8: Quality Assurance in Construction for
Wednesday

 Finish the draft of Project 2
 Due Friday!

	COMP 3100
	Last time
	Questions?
	Construction Techniques
	Bought and customized systems
	Pros and cons of bought and customized systems
	Built systems
	Designing algorithms
	Designing data structures
	Contiguous data structures
	Linked data structures
	Programming
	Programming language paradigms
	Imperative languages
	Data-driven languages
	Declarative languages
	Idioms
	Programming style
	Naming
	Older naming conventions
	Layout conventions
	Commenting
	Good commenting
	Questionable commenting
	Quiz
	Upcoming
	Next time…
	Reminders

